(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Consider the following well-formed formulae:
 
Consider the following well-formed formulae:
<br>
+
I. $&not;&forall;x(P(x))$
+
I. $\neg \forall x(P(x))$
&nbsp;
+
II. $&not;&exist;x(P(x))$
+
II. $\neg \exists x(P(x))$
&nbsp;
+
III. $&not;&exist;x(&not;P(x))$
+
III. $\neg \exists x(\neg P(x))$
&nbsp;
+
IV. $&exist;x(&not;P(x))$
+
IV. $\exists x(\neg P(x))$
<br>
+
 
Which of the above are equivalent?
 
Which of the above are equivalent?
 
 
Line 21: Line 21:
 
==={{Template:Author|Happy Mittal|{{mittalweb}} }}===
 
==={{Template:Author|Happy Mittal|{{mittalweb}} }}===
 
A formula $&forall;x(P(x))$ is equivalent to formula $&not;&exist;x(&not;P(x))$ i.e. add $&not;$ inside and outside, and
 
A formula $&forall;x(P(x))$ is equivalent to formula $&not;&exist;x(&not;P(x))$ i.e. add $&not;$ inside and outside, and
convert $&forall;$ to &exist;$.
+
convert $&forall;$ to $&exist;$.
<br>
+
 
So, $&not;&forall;x(P(x))$ is equivalent to $&exist;x(&not;P(x))$.  
 
So, $&not;&forall;x(P(x))$ is equivalent to $&exist;x(&not;P(x))$.  
  
Line 29: Line 29:
  
 
[[Category: GATE2009]]
 
[[Category: GATE2009]]
[[Category: Graph Theory questions]]
+
[[Category: Mathematical Logic questions from GATE]]

Latest revision as of 22:32, 16 April 2015

Consider the following well-formed formulae:

I. $\neg \forall x(P(x))$

II. $\neg \exists x(P(x))$

III. $\neg \exists x(\neg P(x))$

IV. $\exists x(\neg P(x))$

Which of the above are equivalent?

(A) I and III

(B) I and IV

(C) II and III

(D) II and IV

Solution by Happy Mittal

A formula $∀x(P(x))$ is equivalent to formula $¬∃x(¬P(x))$ i.e. add $¬$ inside and outside, and convert $∀$ to $∃$.

So, $¬∀x(P(x))$ is equivalent to $∃x(¬P(x))$.




blog comments powered by Disqus

Consider the following well-formed formulae:
I. $¬∀x(P(x))$   II. $¬∃x(P(x))$   III. $¬∃x(¬P(x))$   IV. $∃x(¬P(x))$
Which of the above are equivalent?

(A) I and III

(B) I and IV

(C) II and III

(D) II and IV

Solution by Happy Mittal[edit]

A formula $∀x(P(x))$ is equivalent to formula $¬∃x(¬P(x))$ i.e. add $¬$ inside and outside, and convert $∀$ to ∃$.
So, $¬∀x(P(x))$ is equivalent to $∃x(¬P(x))$.




blog comments powered by Disqus