Line 19: Line 19:
  
  
<div class="fb-like"  data-layout="standard" data-action="like" data-show-faces="true" data-share="true"></div>
+
{{Template:FB}}
 
 
 
 
<div class="fb-share-button"  data-type="button_count"></div>
 
 
 
  
  

Revision as of 10:51, 11 December 2013

Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?

(A) $8/(2e^{3})$

(B) $9/(2e^{3})$

(C) $17/(2e^{3})$

(D) $26/(2e^{3})$

Solution

Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$,

We have to sum the probability density function for k = 0,1 and 2 and $\lambda$ = 3 (thus finding the cumulative mass function)

=$(1/e^3) + (3/e^3) + (9/2e^3)$

=$17/(2e^{3})$





blog comments powered by Disqus

Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?

(A) $8/(2e^{3})$

(B) $9/(2e^{3})$

(C) $17/(2e^{3})$

(D) $26/(2e^{3})$

Solution[edit]

Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$,

We have to sum the probability density function for k = 0,1 and 2 and $\lambda$ = 3 (thus finding the cumulative mass function)

=$(1/e^3) + (3/e^3) + (9/2e^3)$

=$17/(2e^{3})$




blog comments powered by Disqus