What's the no. of distinct binary trees possible with n labeled nodes?

Solution by Arjun Suresh

For a binary tree with <math>n</math> nodes, the no. of edges is <math>n-1</math>. So, this problem can be reduced to the no. of ways in which we can make <math>n-1</math> edges from <math>n</math> vertices. An edge can be made either as a left child of a node or as a right child. Hence, for <math>n</math> nodes, we have <math>2n</math> possibilities for the first edge, <math>2n-1</math> for the second edge and so on. Thus, for <math>n-1</math> edges, the total no. of ways

= $2n * (2n-1) * (2n-2) * .... * (2n - (n - 2))$

= $2n * (2n-1) * (2n-2) * .... * (n + 2)$

=$ \frac{(2n)!} { (n+1)!}$

What's the no. of distinct binary trees possible with n unlabeled nodes? (No. of structurally different binary trees possible with n nodes)

Solution by Arjun Suresh

If the nodes are similar (unlabeled), then the no. of distinct binary trees will be the above value divided by the no. of distinct permutations possible for a binary tree structure, which will be $n!$ for a tree with $n$ nodes.

$ \frac{(2n)!} { (n+1)! n!}$

=$\frac{2nCn}{n+1}$

(This is the $n^{th}$ Catalan number)

What's the no. of distinct binary search trees possible with n nodes?

Solution by Arjun Suresh

Counting the no. of distinct binary search trees possible for n nodes, is similar to counting the no. of distinct binary trees possible for n nodes assuming nodes are unlabeled. Hence, this value will also be

=$\frac{2nCn}{n+1}$

($n^{th}$ Catalan number)

Alternatively, for each valid binary search tree, we can get $n!$ binary trees by permuting the vertices, of which only 1 permutation is a $BST$. Hence, the total no. of binary search trees possible with $n$ nodes will be

$\frac{\text{No. of distinct binary trees with $n$ distinct nodes}} {n!}$

= $ \frac{(2n)!} { (n+1)! n!}$

=$\frac{2nCn}{n+1}$

($n^{th}$ Catalan number)

(We can also use the fact that for a given tree structure, there can be only 1 $BST$. Hence, no. of different $BST$s with n nodes will be equal to the no. of different binary tree structures possible for n nodes)




blog comments powered by Disqus

What's the no. of distinct binary trees possible with n labeled nodes?[edit]

Solution by Arjun Suresh[edit]

For a binary tree with <math>n</math> nodes, the no. of edges is <math>n-1</math>. So, this problem can be reduced to the no. of ways in which we can make <math>n-1</math> edges from <math>n</math> vertices. An edge can be made either as a left child of a node or as a right child. Hence, for <math>n</math> nodes, we have <math>2n</math> possibilities for the first edge, <math>2n-1</math> for the second edge and so on. Thus, for <math>n-1</math> edges, the total no. of ways

= $2n * (2n-1) * (2n-2) * .... * (2n - (n - 2))$

= $2n * (2n-1) * (2n-2) * .... * (n + 2)$

=$ \frac{(2n)!} { (n+1)!}$

What's the no. of distinct binary trees possible with n unlabeled nodes? (No. of structurally different binary trees possible with n nodes)[edit]

Solution by Arjun Suresh[edit]

If the nodes are similar (unlabeled), then the no. of distinct binary trees will be the above value divided by the no. of distinct permutations possible for a binary tree structure, which will be $n!$ for a tree with $n$ nodes.

$ \frac{(2n)!} { (n+1)! n!}$

=$\frac{2nCn}{n+1}$

(This is the $n^{th}$ Catalan number)

What's the no. of distinct binary search trees possible with n nodes?[edit]

Solution by Arjun Suresh[edit]

Counting the no. of distinct binary search trees possible for n nodes, is similar to counting the no. of distinct binary trees possible for n nodes assuming nodes are unlabeled. Hence, this value will also be

=$\frac{2nCn}{n+1}$

($n^{th}$ Catalan number)

Alternatively, for each valid binary search tree, we can get $n!$ binary trees by permuting the vertices, of which only 1 permutation is a $BST$. Hence, the total no. of binary search trees possible with $n$ nodes will be

$\frac{\text{No. of distinct binary trees with $n$ distinct nodes}} {n!}$

= $ \frac{(2n)!} { (n+1)! n!}$

=$\frac{2nCn}{n+1}$

($n^{th}$ Catalan number)

(We can also use the fact that for a given tree structure, there can be only 1 $BST$. Hence, no. of different $BST$s with n nodes will be equal to the no. of different binary tree structures possible for n nodes)




blog comments powered by Disqus